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Power calculations for a dynamic regression model. Here we examine a stationary

first-order autoregression and estimate the slope coefficient by the instrumental-variable

estimator of Anderson and Hsiao (1981). This is the optimal generalized method-of-moment

estimator constructed from the moments

E

 yg,0∆ηg,2

yg,1∆ηg,3

 = 0.

In the calculations to follow we assume that αg = 0 for all groups. The Jacobian and

covariance matrix of the two Anderson and Hsiao (1981) moments are, respectively, equal

to

G :=
σ2

1 + β

 1

1

 , A :=
σ4

1− β2

 2 −β

−β 2

 ,

when the errors are uncorrelated and have variance σ2. These matrices can be combined

to find that

ωg = −(G′A−1G)−1G′A−1

 yg,0∆ηg,2

yg,1∆ηg,3

 = −1 + β

σ2

yg,0∆ηg,2 + yg,1∆ηg,3
2

.

When the moment conditions hold this is a mean-zero random variable. The moments

typically fail to hold when our null of no within-group correlation is violated. When
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εg,i = ug,i + θ ug,i−1 with ug,i ∼ independent (0, σ2),

E

 yg,0∆ηg,2

yg,1∆ηg,3

 = −θ σ2

 1

1

 ,

so that E(ωg) = (1 + β) θ. This is indeed non-zero for all θ 6= 0. When the errors, instead,

follow the autoregressive process εg,i = ρ εg,i−1 + ug,i with ug,i ∼ independent (0, σ2), the

bias equals

E

 yg,0∆ηg,2

yg,1∆ηg,3

 = − %

1− ρβ
σ2

 1

1

 ;

this can be verified using that yg,i =
∑∞

j=0 β
jεg,i−j, which itself follows from backward

substitution. Hence, E(ωg) = (1 + β) %/(1 − ρβ) in this case. This again fails to be zero

whenever ρ is non-zero.

The Jacobian of E(vg) with respect to β is

Ω = (1− β)σ2

 1

−1

 ,

which has a simple form. It follows that, when errors follow a moving-average process and

an autoregressive process, respectively,

E(vg +Ω ωg) = θ σ2 β2

 −1

1

 , E(vg +Ω ωg) =
β − ρ
1− βρ

β % σ2

 −1

1

 .

The bias expressions show that our test will have no power when β = 0. When the errors

follow a first-order autoregressive process trivial power will also occur when ρ = β. The

bias in the Anderson and Hsiao (1981) estimator effectively cancels the bias in our moment

conditions in these cases. This result is not general, in that it is specific to the setting of a

three-wave panel, stationary data, and the use of the Anderson and Hsiao (1981) estimator.

Lengthy but standard calculations show that the covariance matrix of vg +Ω ωg under

the null is

Ṽ = σ4

 2 −1

−1 2

− 1− β2

2
σ4

 2 + β −(1 + β)

−(1 + β) β

 .
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Figure 1: Power calculations using the Anderson-Hsiao estimator
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Figure notes. Our test for β = − 1
2 (dashed line) and β = 1

2 (dashed-dotted line) using the Anderson-Hsiao

estimator, together with its oracle version (solid line). The size of the tests (.05) is indicated by a horizontal

dotted line.

The first matrix in the right-hand side expression corresponds to V from above (by virtue

of stationarity). With |β| < 1 it follows that (Ṽ )11 < (V )11 and (Ṽ )12 < (V )12 (in

magnitude) for any β. On the other hand, (Ṽ )22 < (V )22 when β > 0 and (Ṽ )22 > (V )22

when β < 0.

The non-centrality parameter in Theorem 2(ii) is then found to equal

λβ β
2 θ2, λβ %

2

(
β − ρ
1− βρ

)2

,

for moving-average and autoregressive alternatives, respectively, where we have used the

shorthand

λβ :=
4β2

2β3 + 3β2 − 2β + 3

We note that λβ is roughly U-shaped on (−1, 1), reaching its minimum of zero at zero and

its maximum of 2/3 at the boundary. This implies, for example, that the test is uniformly

less powerful against moving-average alternatives compared to the case where the errors

are directly observed.

We illustrate our power calculations for this example in Figure 1, again for n = 100.

The power curves are for β = −1
2

(dashed line) and β = 1
2

(dashed-dotted line). The
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solid line corresponds to the power curve for the oracle test where β is known (and so

Theorem 1 applies); these curves co-incide with those reported in Figure ??. The plots

illustrate the power loss relative to the oracle and the dependence of power on the value

of the autoregressive coefficient. In the autoregressive case it also shows the loss of power

against alternatives where ρ is close to β.

Under the null the Anderson and Hsiao (1981) estimator is inefficient as we equally

have

E(yg,0∆ηg,3) = 0

in that case. Combining both sets of moments would yield the Arellano and Bond (1991)

estimator. To show the sensitivity of our test to the first-step estimator used we next

evaluate local power when using the (just identified) estimator based on this additional

moment condition alone. It turns out that the rank condition for this estimator fails when

β = 0 and so, in what follows, we presume that β 6= 0. The intermediate calculations are

similar to before and omitted for brevity. We have

Ṽ = σ4

 2 −1

−1 2

− σ4

2

1− β2

β2

 −1 1

1 −1

 .

For moving-average alternatives we find that

E(vg +Ωωg) = E(vg) = θ σ2

 −1

1

 ;

indeed, E(yg,0∆ηg,3) = 0 remains valid under such alternatives, and so E(ωg) = 0 here. For

autoregressive alternatives on the other hand,

E(vg +Ωωg) = % σ2 2β − ρβ2 − ρ
2β(1− βρ)

 −1

1

 ,

which is again more complicated. Here, our test will have no power when ρ = 2β/(1 + β2).

The plots in Figure 2 compare the power curves of this alternative implementation of

our test to the former as well as its oracle version. The power gains are substantial in the

case of moving-average alternatives. There is a small power loss relative to the oracle as the
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Figure 2: Power calculations using the alternative estimator
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Figure notes. Our test (dashed line) for β = − 1
2 (upper two plots) and β = 1

2 (lower two plots) using the

alternative method-of-moment estimator, together with its oracle version (solid line) and the test using

the Anderson-Hsiao estimator (dashed-dotted line). The size of the tests (.05) is indicated by a horizontal

dotted line.
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estimator of β introduces additional sampling noise. The variance increase depends on β

only through its square and so the power curves for β = −1
2

in the upper plot and for β = 1
2

in the lower plot co-incide. The relative power gains against autoregressive alternatives are

a more complicated function of the parameter values but are still present over most parts

of the (−1, 1) interval.
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